DVariateTest¶
- class hyppo.d_variate.base.DVariateTest(compute_kernel=None, **kwargs)¶
- A base class for a \(d\)-variate independence test. - Parameters
- compute_kernel ( - str,- callable, or- None, default:- "gaussian") -- A function that computes the kernel similarity among the samples within each data matrix. Valid strings for- compute_kernelare, as defined in- sklearn.metrics.pairwise.pairwise_kernels,- [ - "additive_chi2",- "chi2",- "linear",- "poly",- "polynomial",- "rbf",- "laplacian",- "sigmoid",- "cosine"]- Note - "rbf"and- "gaussian"are the same metric. Set to- Noneor- "precomputed"if- argsare already similarity matrices. To call a custom function, either create the similarity matrix before-hand or create a function of the form- metric(x, **kwargs)where- xis the data matrix for which pairwise kernel similarity matrices are calculated and kwargs are extra arguments to send to your custom function.
- **kwargs -- Arbitrary keyword arguments for - multi_compute_kern.
 
 
Methods Summary
| 
 | Calculates the \(d\)-variate independence test statistic. | 
| 
 | Calculates the d_variate independence test statistic and p-value. | 
- abstract DVariateTest.statistic(*args)¶
- Calculates the \(d\)-variate independence test statistic. 
- abstract DVariateTest.test(*args, reps=1000, workers=1)¶
- Calculates the d_variate independence test statistic and p-value. - Parameters
- *args ( - ndarrayof- float) -- Variable length input data matrices. All inputs must have the same number of samples. That is, the shapes must be- (n, p),- (n, q), etc., where n is the number of samples and p and q are the number of dimensions.
- reps ( - int, default:- 1000) -- The number of replications used to estimate the null distribution when using the permutation test used to calculate the p-value.
- workers ( - int, default:- 1) -- The number of cores to parallelize the p-value computation over. Supply- -1to use all cores available to the Process.
 
- Returns
 
